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Abstract 
The design of a poverty measure involves the selection of a set of parameters and poverty 
figures. In most cases the measures are estimated from sample surveys. This raises the 
question of how conclusive particular poverty comparisons are subject to both the set of 
selected parameters (or variations within a plausible range) and the sample datasets. This 
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chapter shows how to apply dominance and rank robustness tests to assess comparisons as 
poverty cutoffs and other parameters changes. It presents ingredients of statistical inference, 
including standard errors, confidence intervals, and hypothesis tests. And it discusses how 
robustness and statistical inference tools can be used together to assert concrete policy 
conclusions. An appendix presents methods for computing standard errors, including the 
bootstrapped standard errors. 

Keywords: robustness analysis, statistical inference, dominance analysis, rank robustness, 
standard errors, bootstrap 

JEL classification: C10, C12, I32 

Acknowledgements 
We received very helpful comments, corrections, improvements, and suggestions from many 
across the years. We are also grateful for direct comments on this working paper from Tony 
Atkinson and Gaston Yalonetzky. 

Citation: Alkire, S., Foster, J. E., Seth, S., Santos, M. E., Roche, J. M., and Ballon, P. (2015). 
Multidimensional Poverty Measurement and Analysis, Oxford: Oxford University Press, ch. 8. 

 



Alkire, Foster, Seth, Santos, Roche and Ballon  8: Robustness Analysis 

OPHI Working Paper 89  www.ophi.org 1 

8 Robustness Analysis and Statistical Inference 

Chapter 5 presented the methodology for the Adjusted Headcount Ratio poverty index 

𝑀0 and its different partial indices; Chapter 6 discussed how to design multidimensional 

poverty measures using this methodology in order to advance poverty reduction; and 

Chapter 7 explained novel empirical techniques required during implementation. 

Throughout, we have discussed how the index and its partial indices may be used for 

policy analysis and decision-making. For example, a central government may want to 

allocate resources to reduce poverty across its subnational regions or may want to claim 

credit for strong improvement in the situation of poor people using an implementation 

of the Adjusted Headcount Ratio. One is, however, entitled to question how conclusive 

any particular poverty comparisons are for two different reasons. 

One reason is that the design of a poverty measure involves the selection of a set of 

parameters, and one may ask how sensitive policy prescriptions are to these parameter 

choices. Any comparison or ranking based on a particular poverty measure may alter 

when a different set of parameters, such as the poverty cutoff, deprivation cutoffs or 

weights, is used. We define an ordering as robust with respect to a particular parameter 

when the order is maintained despite a change in that parameter.1 The ordering can refer 

to the poverty ordering of two aggregate entities, say two countries or other geographical 

entities, which is a pairwise comparison, but it can also refer to the order of more than 

two entities, what we refer to as a ranking. Clearly, the robustness of a ranking (of several 

entities) depends on the robustness of all possible pairwise comparisons. Thus, the 

robustness of poverty comparisons should be assessed for different, but reasonable, 

specifications of parameters. In many circumstances, the policy-relevant comparisons 

should be robust to a range of plausible parameter specifications. This process is referred 

as robustness analysis. There are different ways in which the robustness of an ordering 

can be assessed. This chapter presents the most widely implemented analyses; new 

procedures and tests may be developed in the near future. 

The second reason for questioning claimed poverty comparisons is that poverty figures 

in most cases are estimated from sample surveys for drawing inferences about a 

                                                 

1 This chapter is confined to assessing the robustness of rank ordering across groups. Naturally it is 
essential also to assess the sensitivity of key values (such as the values of 𝑀0  and dimensional 
contributions) to parameter changes, in situations in which policies use these cardinal values. 
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population. Thus, it is crucial that inferential errors are also estimated and reported. This 

process of drawing conclusions about the population from the data that are subject to 

random variation is referred as statistical inference. Inferential errors affect the degree 

of certainty with which two and more entities may be compared in terms of poverty for a 

particular set of parameters’ values. Essentially, the difference in poverty levels between 

two entities – states for example – may or may not be statistically significant. Statistical 

inference affects not only the poverty comparisons for a particular set of parameter 

values but also the robustness of such comparisons for a range of parameters’ values. 

In general, assessments of robustness should cohere with a measure’s policy use. If the 

policy depends on levels of 𝑀0, then the robustness of the respective levels (or ranks) of 

poverty should be the subject of robustness tests presented here. If the policy uses 

information on the dimensional composition of poverty, robustness tests should assess 

these—which lie beyond the scope of this chapter, but see Ura et al. (2012).  Recall also 

from Chapter 6 people’s values may generate plausible ranges of parameters. Robustness 

tests clarify the extent to which the same policies would be supported across that 

relevant range of parameters. In this way, robustness tests can be used for building 

consensus or for clarifying which points of dissensus have important policy implications. 

This chapter is divided into two sections. Section 8.1 presents a number of useful tools 

for conducting different types of robustness analysis; section 8.2 presents various 

techniques for drawing statistical inferences and section 8.3 presents some ways in which 

the two types of techniques can be brought together. 

8.1 Robustness Analysis 

In monetary poverty measures, the parameters include (a) the set of indicators 

(components of income or consumption); (b) the price vectors used to construct the 

aggregate as well as any adjustments such as for inflation or urban/rural price 

differentials; (c) the poverty line; and (d) equivalence scales (if applied). The parameters 

that influence the multidimensional poverty estimates and poverty comparisons based on 

the Adjusted Headcount Ratio are (i) the set of indicators (denoted by subscript 𝑗 =

1, … , 𝑑); (ii) the set of deprivation cutoffs (denoted by vector 𝑧); (iii) the set of weights 

or deprivation values (denoted by vector 𝑤); and (iv) the poverty cutoff (denoted by 𝑘). 

A change in these parameters may affect the overall poverty estimate or comparisons 

across regions or countries. 
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This section introduces tools that can be used to test the robustness of pairwise 

comparisons as well as the robustness of overall rankings with respect to the initial 

choice of the parameters. We first introduce a tool to test the robustness of pairwise 

comparisons with respect to the choice of the poverty cutoff. This tool tests an extreme 

form of robustness, borrowing from the concept of stochastic dominance in the single-

dimensional context (section 3.3.1). 2  When dominance conditions are satisfied, the 

strongest possible results are obtained. However, as dominance conditions are highly 

stringent and dominance tests may not hold for a large number of the pairwise 

comparisons, we present additional tools for assessing the robustness of country 

rankings using the correlation between different rankings. This second set of tools can be 

used with changes in any of the other parameters too, namely, weights, indicators and 

deprivation cutoffs. 

8.1.1 Dominance Analysis for Changes in the Poverty Cutoff 

Although measurement design begins with the selection of indicators, weights, and 

deprivation cutoffs, we begin our robustness analysis by assessing dominance with 

respect to changes in the poverty cutoff, which is applied to the weighted deprivation 

scores constructed using other parameters. We do this because as in the unidimensional 

context, it is the poverty cutoff that finally identifies who is poor, thereby defining the 

‘headcount ratio’ and effectively setting the level of poverty. It is arguably most visibly 

debated.3  We have introduced the concept of stochastic dominance in the uni- and 

multidimensional context in section 3.3.1. This part of the chapter builds on that concept 

and technique, focusing primarily on the first-order stochastic dominance (FSD) and 

showing how it can be applied to identify any unambiguous comparisons with respect to 

the poverty cutoff for our two most widely used poverty measures—Adjusted 

Headcount Ratio (𝑀0) and Multidimensional Headcount Ratio (𝐻). Recall from section 

3.3.1 the notation of two univariate distributions of achievements 𝑥  and 𝑦  with 

cumulative distribution functions (CDF) 𝐹𝑥  and 𝐹𝑦 , where 𝐹𝑥(𝑏) and 𝐹𝑦 𝑏  are the 

                                                 

2 There is a well-developed literature on robustness and sensitivity analyses for composite indices rankings 
with respect to relative weights, normalization methods, aggregation methods, and measurement errors. 
See Nardo et al. (2005), Saisana et al. (2005), Cherchye et al. (2007), Cherchye et al. (2008), Foster, 
McGillivray and Seth (2009, 2013), Permanyer (2011, 2012), Wolff et al. (2011), and Høyland et al. (2012). 
These techniques may require adaptation to apply to normative, counting-based measures using ordinal 
data. 
3 More elaborative dominance analysis can be conducted with respect to the deprivation cutoffs and 
weights. For multivariate stochastic dominance analysis using ordinal variables, see Yalonetzky (2014). 
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shares of population in distributions 𝑥 and 𝑦 with achievement level less than 𝑏 ∈ ℝ+. 

Distribution 𝑥  first-order stochastically dominates distribution 𝑦  (or 𝑥  FSD 𝑦)  if and 

only if 𝐹𝑥 𝑏 ≤ 𝐹𝑦(𝑏) for all 𝑏 and 𝐹𝑥 𝑏 < 𝐹𝑦(𝑏) for some 𝑏. Strict FSD requires that 

𝐹𝑥 𝑏 < 𝐹𝑦(𝑏) for all 𝑏 .4 Interestingly, if distribution 𝑥  FSD 𝑦 , then 𝑦  has no lower 

headcount ratio than 𝑥 for all poverty lines. 

Let us now explain how we can apply this concept for unanimous pairwise comparisons 

using 𝑀0  and 𝐻  between any two distributions of deprivation scores across the 

population. For a given deprivation cutoff vector 𝑧 and a given weighting vector 𝑤, the 

FSD tool can be used to evaluate the sensitivity of any pairwise comparison to varying 

poverty cutoff 𝑘 . Following the notation introduced in Chapter 2, we denote the 

(uncensored) deprivation score vector by 𝑐 . Note that an element of 𝑐  denotes the 

deprivation score and a larger deprivation score implies a lower level of well-being. 

The FSD tool can be applied in two different ways: one is to convert deprivations into 

attainments by transforming the deprivation score vector 𝑐  into an attainment score 

vector 1 –  𝑐, and the other option is to use the tool directly on the deprivation score 

vector 𝑐. The first approach has been pursued in Alkire and Foster (2011a) and Lasso de 

la Vega (2010). In this section, because it is more direct, we present the results using the 

deprivation score vector and thus avoid any transformation. A person is identified as 

poor if the deprivation score is larger than or equal to the poverty cutoff 𝑘, unlike in the 

attainment space where a person is identified as poor if the person’s attainment falls 

below a certain poverty cutoff. To do that, however, we need to introduce the 

complementary cumulative distribution function (CCDF)—the complement of a 

CDF.5 For any distribution 𝑦 with CDF 𝐹𝑦 , the CCDF of the distribution is 𝐹 𝑦 = 1 –  𝐹𝑦 , 

which means that for any value 𝑏, the CCDF 𝐹 𝑦(𝑏) is the proportion of the population 

that has values larger than or equal to 𝑏. Naturally, CCDFs are downward sloping. The 

first-order stochastic dominance condition in terms of the CCDFs can be stated as 

follows. Any distribution 𝑦 first order stochastically dominates distribution 𝑦′ if and only 

                                                 

4 In empirical applications, some statistical tests cannot discern between weak and strong dominance and 
thus assume 𝑥 first order stochastically dominates distribution 𝑦, if 𝐹𝑥 𝑏 < 𝐹𝑦(𝑏) for all 𝑏. See, for example, 
Davidson and Duclos (2012: 88–89). 
5 This is also variously known as survival function or reliability function in other branches of studies. 
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if 𝐹 𝑦 𝑏 ≥  𝐹 𝑦′ (𝑏) for all 𝑏 and 𝐹 𝑦 𝑏 > 𝐹 𝑦′ (𝑏) for some 𝑏. For strict FSD, the strict 

inequality must hold for all 𝑏. 

Now, suppose there are two distributions of deprivation scores, 𝑐 and 𝑐′ , with CCDFs 𝐹 𝑐  

and 𝐹 𝑐′ . For poverty cutoff 𝑘 , if 𝐹 𝑐 𝑘 ≥ 𝐹 𝑐′ (𝑘) , then distribution 𝑐  has no lower 

multidimensional headcount ratio 𝐻 than distribution 𝑐′ at 𝑘. When is it possible to say 

that distribution 𝑐  has no lower 𝐻  than distribution 𝑐′  for all poverty cutoffs? The 

answer is when distribution 𝑐 first order stochastically dominates distribution 𝑐′. Let us 

provide an example in terms of two four-person vectors of deprivation scores: 𝑐 =

(0, 0.25, 0.5, 1)  and 𝑐′ = (0.5, 0.5, 1,1) . The corresponding CCDFs 𝐹 𝑐  and 𝐹 𝑐′  are 

denoted by a black dotted line and a solid grey line, respectively, in Figure 8.1. No part of 

𝐹 𝑐  lies above that of 𝐹 𝑐′  and so 𝐹 𝑐′  first-order stochastically dominates 𝐹 𝑐  and we can 

conclude that 𝑐  has unambiguously lower poverty than 𝑐′ , in terms of the 

multidimensional headcount ratio. 

Figure 8.1 Complementary CDFs and Poverty Dominance 

 
 

Let us now try to understand dominance in terms of 𝑀0. In order to do so, first note 

that the area underneath a CCDF of a deprivation score vector is the average of its 

deprivation scores. Consider distribution 𝑐  with CCDF 𝐹 𝑐  as in Figure 8.1. The area 

underneath 𝐹 𝑐  is the sum of areas I, II, III, and IV. Area IV is equal to 0.25 × 1/4, Area 

III is 0.5 × 1/4, and Areas I+II  is 1 × 1/4, so essentially each area is a score times its 

frequency in the population. The sum of the four areas (0.25 + 0.5 + 1)/4 =

 𝑐𝑖4
𝑖=1 /4 , is simply the average of all elements in 𝑐  and it coincides with the 𝑀0 

measure for a union approach. When an intermediate or intersection approach to 

identification is used, then the 𝑀0 is the average of the censored deprivation score vector 
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𝑐(𝑘). In other words, the deprivation scores of those who are not identified as poor are 

set to 0. For example, for a poverty cutoff 𝑘 =  0.6, the censored deprivation score 

vector corresponding to 𝑐  is 𝑐 𝑘 = (0, 0, 0, 1) . Obtaining the average of censored 

deprivation scores is equivalent to ignoring areas III and IV in Figure 8.1. The 𝑀0 of 𝑐 

for 𝑘 = 0.6 is the sum of the remaining area I, II which is 1 × 1/4 =  0.25.6 

We now compute the area underneath the censored CCDF for every 𝑘 ∈ (0,1] and plot 

the area on the vertical axis for each 𝑘 on the horizontal axis and refer to it as an 𝑀0 

curve, depicted in Figure 8.2. We denote the 𝑀0 curves of distributions 𝑐 and 𝑐′ by 𝐹 𝑐 ,𝑀0  

and 𝐹 𝑐′ ,𝑀0 , respectively. Given that the 𝑀0 curves are obtained by computing the areas 

underneath the CCDFs, the dominance of 𝑀0  curves is referred as second-order 

stochastic dominance. Given that first-order stochastic dominance implies second-order 

dominance, if first-order dominance holds between two distributions, then 𝑀0 

dominance will also hold between them. However, the converse is not necessarily true, 

that is, even when there is 𝑀0  dominance there may not be 𝐻 dominance. Therefore, 

when the CCDFs of two distributions cross—i.e. there is not first-order (  𝐻 ) 

dominance—it is worth testing 𝑀0 dominance between pairs of distributions, to which 

we refer as pairwise comparisons from now on, using the 𝑀0 curves. Batana (2013) has 

used the 𝑀0  curves for the purpose of robustness analysis while comparing 

multidimensional poverty among women in fourteen African countries. 

Figure 8.2 The Adjusted Headcount Ratio Dominance Curves 

 

                                                 

6 Technically, 𝑀0 for poverty cutoff 𝑘 can be expressed as 𝑀0 =  𝐹 𝑐 𝑥 𝑑𝑥1
𝑘 + 𝑘𝐹 𝑐 𝑘 . In our example, 

Area I is computed as  𝐹 𝑐 𝑥 𝑑𝑥1
𝑘  and Area II as 𝑘𝐹 𝑐 𝑘 . 
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The dominance requirement for all possible poverty cutoffs may be an excessively 

stringent requirement. Practically, one may seek to verify the unambiguity of comparison 

with respect to a limited variation the poverty cutoff, which can be referred to as 

restricted dominance analysis. For example, when making international comparisons 

in terms of the MPI, Alkire and Santos (2010, 2014) tested the robustness of pairwise 

comparisons for all poverty cutoffs 𝑘 ∈ [0.2, 0.4], in addition to the poverty cutoff of 

𝑘 = 1/3. In this case, if the restricted FSD holds between any two distributions, then 

dominance holds for the relevant particular range of poverty cutoffs for both 𝐻 and 𝑀0. 

8.1.2 Rank Robustness Analysis 

In situations in which dominance tests are too stringent, we may explore a milder form 

of robustness, which assesses the extent to which a ranking, that is, an ordering of more 

than two entities, obtained under a specific set of parameters’ values, is preserved when 

the value of some parameter is modified. How should we assess the robustness of a 

ranking? One first intuitive measure is to compute the percentage of pairwise 

comparisons that are robust to changes in parameters – that is the proportion of pairwise 

comparisons that have the same ordering. As we shall see in section 8.3, whenever 

poverty computations are performed using a survey, the statistical inference tools need to 

be incorporated into the robustness analysis.  

Another useful way to assess the robustness of a ranking is by computing a rank 

correlation coefficient between the original ranking of entities and the alternative 

rankings (i.e. those obtained with alternative parameters’ values). There are various 

choices for a rank correlation coefficient. The two most commonly used rank correlation 

coefficients are the Spearman rank correlation coefficient (𝑅𝜌 ) and the Kendall rank 

correlation coefficient (𝑅𝜏).7 

Suppose, for a particular parametric specification, the set of ranks across 𝑚 population 

subgroups is denoted by 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑚), where 𝑟ℓ is the rank attributed to subgroup 

ℓ. The subgroups may be ranked by their level of multidimensional headcount ratio, the 

Adjusted Headcount Ratio, or any other partial indices. We present the rank correlation 

                                                 

7 In this book, we only focus on bivariate rank correlation coefficients, but there are various methods to 
measure multivariate rank concordance that we do not cover. For such examples, see Boland and Proschan 
(1988), Joe (1990), and Kendall and Gibbons (1990). For an application of some of the multivariate 
concordance methods to examine multivariate concordance of MPI rankings, see Alkire et al. (2010). 
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measures using population subgroups, but they apply to ranking across countries as well. 

We denote the set of ranks for an alternative specification of parameters by 𝑟′, where 𝑟ℓ′  
is the rank attributed to subgroup ℓ. The alternative specification may be a different 

poverty cutoff, a different set of deprivation cutoffs, a different set of weights, or a 

combination of all three. If the initial and the alternative specification yield exactly the 

same set of rankings across subgroups, then 𝑟ℓ = 𝑟ℓ′  for all ℓ = 1, … , 𝑚. In this case, we 

state that the two sets of rankings are perfectly positively associated and the association 

is highest across the two specifications. In terms of the previous approach, 100% of the 

pairwise comparisons are robust to changes in one or more parameters’ values. On the 

other hand, if the two specifications yield completely opposite sets of rankings, then 

𝑟ℓ = 𝑟𝑚−ℓ
′  for all ℓ = 1, … , 𝑚. In this case, we state that the two sets of rankings are 

perfectly negatively associated and the association is lowest across the two 

specifications. In terms of the previous approach, 0% of the pairwise comparisons are 

robust to changes in one or more parameters’ values. 

The Spearman rank correlation coefficient can be expressed as 

 
𝑅𝜌 = 1 − 6   𝑟ℓ − 𝑟ℓ′  2𝑚

ℓ=1
𝑚(𝑚2 − 1)

. (8.1) 

Intuitively, for the Spearman rank correlation coefficient, the square of the difference in 

the two ranks for each subgroup is computed and an average is taken across all 

subgroups. The 𝑅𝜌  is bounded between – 1 and +1. The lowest value of – 1 is obtained 

when two rankings are perfectly negatively associated with each other whereas the largest 

value of +1 is obtained when two rankings are perfectly positively associated with each 

other. 

The Kendall rank correlation coefficient is based on the number of concordant pairs and 

discordant pairs. A pair (ℓ, ℓ′) is concordant if the comparisons between two objects are 

the same in both the initial and alternative specification, i.e. 𝑟ℓ > 𝑟ℓ′  and 𝑟ℓ′ > 𝑟ℓ′
′ . In 

terms of the previously used terms, a concordant pair is equivalent to a robust pairwise 

comparison. A pair, on the other hand, is discordant if the comparisons between two 

objects are altered between the initial and the alternative specification such that 𝑟ℓ > 𝑟ℓ′  

but 𝑟ℓ′ < 𝑟ℓ′
′ . In terms of the previously used terms, a discordant pair is equivalent to a 

non-robust pairwise comparison. The 𝑅𝜏 is the difference in the number of concordant 
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and discordant pairs divided by the total number of pairwise comparisons. The Kendall 

rank correlation coefficient can be expressed as 

 𝑅𝜏 =
# Concordant Pairs − # Discordant Pairs

𝑚(𝑚 − 1)/2
. (8.2) 

Like 𝑅𝜌, 𝑅𝜏 also lies between – 1 and +1. The lowest value of – 1 is obtained when two 

rankings are perfectly negatively associated with each other whereas the largest value of 

+1 is obtained when two rankings are perfectly positively associated with each other. 

Although both 𝑅𝜌 and 𝑅𝜏 are used to assess rank robustness the Kendall rank correlation 

coefficient has an intuitive interpretation. Suppose the Kendall Tau correlation 

coefficient is 0.90, from equation (8.2), it can be deduced that this means that 95% of the 

pairwise comparisons are concordant (i.e. robust) and only 5% are discordant. Equations 

(8.1) and (8.2) are based on the assumption that there are no ties in the rankings. In other 

words, both expressions are applicable when no two entities have equal values. When 

there are ties, Kendall (1970) offers two adjustments in the denominator of both rank 

correlation coefficients (𝑅𝜌  and 𝑅𝜏 ) to correct for tied ranks; these adjusted Kendall 

coefficients are commonly known as tau-b and tau-c. 

Table 8.1 Correlation among Country Ranks for Different Weights8 

    Equal Weights  

Alternative Weights 1 Spearman 0.979 
Kendall 0.893 

Alternative  Weights 2 Spearman 0.987 
Kendall 0.918 

Alternative Weights 3 Spearman 0.985 
Kendall 0.904 

 
Let us present one empirical illustration showing how rank robustness tools may be used 

in practice. The first illustration presents the correlation between 2011 MPI rankings 

across 109 countries and the rankings for three alternative weighting vectors (Alkire et al. 

2011). The MPI attaches equal weights across three dimensions: health, education, and 

standard of living. However, it is hard to argue with perfect confidence that the initial 

weight is the correct choice. Therefore, three alternative weighting schemes were 

considered. The first alternative assigns a 50% weight to the health dimension and then a 

25% weight to each of the other two dimensions. Similarly, the second alternative assigns 

a 50% weight to the education dimension and then distributes the rest of the weight 
                                                 

8 The computations of the Spearman and Kendall coefficients in the table have been adjusted for ties. For 
the exact formulation of tie-adjusted coefficients, see Kendall and Gibbons (1990).  



Alkire, Foster, Seth, Santos, Roche and Ballon  8: Robustness Analysis 

OPHI Working Paper 89  www.ophi.org 10 

equally across the other two dimensions. The third alternative specification attaches a 

50% weight to the standard of living dimension and then 25% weights to each of the 

other two dimensions. Thus, we now have four different rankings of 109 countries, each 

involving 5,356 pairwise comparisons. Table 8.1 presents the rank correlation coefficient 

𝑅𝜌  and 𝑅𝜏  between the initial ranking and the ranking for each alternative specification. 

It can be seen that the Spearman coefficient is around 0.98 for all three alternatives. The 

Kendall coefficient is around 0.9 for each of the three cases, implying that around 80% 

of the comparisons are concordant in each case. 

The same type of analysis has been done to changes in other parameters’ values, such as 

the indicators used and deprivation cutoffs (Alkire and Santos 2014).  

8.2 Statistical Inference 

The last section showed how the robustness of claims made using the Adjusted 

Headcount Ratio and its partial indices may be assessed. Such assessments apply to 

changes in a country’s performance over time, comparisons between different countries, 

and comparisons of different population subgroups within a country. Most frequently, 

the indices are estimated from sample surveys with the objective of estimating the 

unknown population parameters as accurately as possible. A sample survey, unlike a 

census that covers the entire population, consists of a representative fraction of the 

population. 9  Different sample surveys, even when conducted at the same time and 

despite having the same design, would most likely provide a different set of estimates for 

the same population parameters. Thus, it is crucial to compute a measure of confidence 

or reliability for each estimate from a sample survey. This is done by computing the 

standard deviation of an estimate. The standard deviation of an estimate is referred to as 

its standard error. The lower the magnitude of a standard error, the larger the reliability 

of the corresponding estimate. Standard errors are key for hypothesis testing and for the 

construction of confidence intervals, both of which are very helpful for robustness 

analysis and more generally for drawing policy conclusions.  In what follows we briefly 

explain each of these statistical terms. 

                                                 

9 Various sampling methods, such as simple random sampling, systematic sampling, stratified sampling, 
and proportional sampling, are used to conduct a sampling survey. 
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8.2.1 Standard Errors 

There are different approaches to estimating standard errors. Two approaches are 

commonly followed: 

x Analytical Approach: Formulas that provide either the exact or the asymptotic 

approximation of the standard error and thus confidence intervals10  

x Resampling Approach: Standard errors and the confidence intervals may be 

computed through the bootstrap or similar techniques (as performed for the 

global MPI in Alkire and Santos 2014). 

The Appendix to this chapter presents the formulas for computing standard errors with 

the analytical approach depending on the survey design.  

The analytical approach is based on two assumptions. Such assumptions are based on the 

premise that the sample surveys used for estimating the population parameters are 

significantly smaller in size compared to the population size under consideration.11 For 

example, the sample size of the Demographic and Health Survey of India in 2006 was 

only 0.04% of the Indian population. The first assumption is that the samples are drawn 

from a population that is infinitely large, so that even the finite population under study is a 

sample of an infinitely large superpopulation. This philosophical assumption is based on 

the superpopulation approach, which is different from the finite population 

approach (for further discussion see Deaton 1997). A finite population approach 

requires that a finite population correction factor should be used to deflate the standard 

error if the sample size is large relative to the population. However, if the sample size is 

significantly smaller than the finite population size, the finite population correction factor 

is approximately equal to one. In this case, the standard errors based on both approaches 

are almost the same. 

The second assumption is that we treat each sample as drawn from the population with 

replacement. The practical motivation behind the assumption is the size of the sample 

survey compared to the population. The sample surveys are commonly conducted 

without replacement because, once a household is visited and interviewed, the same 

household is not visited again on purpose. When samples are drawn with replacement, 

the observations are independent of each other. However, if the samples are drawn 
                                                 

10 Yalonetzky (2010). 
11  If the particular condition under study does not justify the assumptions made here, then these 
assumptions need to be relaxed and the standard error formulations are adjusted accordingly. 
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without replacement, then the samples are not independent of each other. It can be 

shown that in the absence of multistage sampling, a sampling without replacements 

needs a Finite Population Correction (FPC) factor for computing the sampling variance. 

The FPC factor is of the order 1 − 𝕟/𝑛, where 𝕟 is the sample size and 𝑛 is the size of 

the population. The use of an FPC factor allows us to get a better estimate of the true 

population variance. However, when the sample size is small with respect to the 

population, i.e. 𝕟/𝑛 → 0, the use of an FPC factor will not make much difference to the 

estimation of the sampling variance as the FPC factor is closer to one (Duclos and Araar 

2006: 276). These assumptions would be required in order to justify our assumption that 

each sample is independently and identically distributed. 

We now illustrate relevant methods using the Adjusted Headcount Ratio (𝑀0) denoting 

its sample estimate by 𝑀 0  and standard error of the estimate by 𝑠𝑒𝑀0 . However, the 

methods are equally applicable to inferences for the multidimensional headcount ratio, 

the intensity, and the censored headcount ratios as long the standard errors are 

appropriately computed, as outlined in the Appendix of this chapter. 

8.2.2 Confidence Intervals 

A confidence interval of a point estimate is an interval that contains the true population 

parameter with some probability that is known as its confidence level. A significance 

level that is used is the complement of the confidence level. Let us denote the 

significance level12 by 𝜔, which by definition ranges between 0 and 100%. The level of 

confidence is  1 − 𝜔  percent. Thus, for a given estimate, if one wants to be 95% 

confident about the range within which the true population parameter lies, then the 

significance is 5%. Similarly, if one wants to be 99% confident, then the significance level 

is 1%. 

By the central limit theorem, we can say that the difference between the population 

parameter and the corresponding sample average divided by the standard error 

approximates the standard normal distribution (i.e. the normal distribution with a mean 

of 0 and a standard deviation of 1). Using the standard normal distribution one can 

                                                 

12 The significance level is also referred to as the Type I error, which is the probability of rejecting the null 
hypothesis when it is true. See section 8.2.3 for the notion of null hypothesis. By statistical convention, the 
significance level is denoted with 𝛼. However, to avoid confusion with the use of this symbol for other 
purposes in this book, we denote it 𝜔. 
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determine the critical value associated with that significance level, which is given by the 

inverse of the standard normal distribution at 𝜔/2. In other words, the critical value 

is the value at which the probability that the statistic is higher than that is precisely 𝜔/

2.13 The critical values to be used when one is interested in computing a 95% confidence 

interval are: /2| | 1.96 Zz . If instead one is interested in computing a 99% or a 90% 

confidence interval, the corresponding critical values are /2| | 2.58 Zz  and /2| | 1.645 Zz , 

respectively. 

For example, Table 8.2 presents the sample estimate of the Adjusted Headcount Ratio 

(𝑀 0 ), the multidimensional headcount ratio (𝐻 ), and the average deprivation share 

among the poor (𝐴 ) from the Demographic and Health Survey of 2005–2006. India’s 

sample estimate of the population-Adjusted Headcount Ratio is 𝑀 0 = 0.251 , with a 

standard error 𝑠𝑒𝑀0 = 0.0026 . The 95 % confidence interval is then (𝑀 0 − 𝔷𝜔/2 ×

𝑠𝑒𝑀0 , 𝑀 0 + 𝔷𝜔/2 × 𝑠𝑒𝑀0 ) = (0.245,0.256). This means that with 95% confidence, the 

true population 𝑀0 lies between 0.245 and 0.256. Similarly, the 99% confidence interval 

of India’s 𝑀 0 is (0.244,0.257). The more one wants to be confident about the range 

within which the true population parameter lies, the larger the confidence interval will be. 

Table 8.2 Confidence Intervals for 𝑴 𝟎, 𝑯 , and 𝑨  

India 2005/6 

Estimate 
 
Value 

Standard 
Error 

Confidence Interval 
(95%) 

Confidence Interval 
(99%) 

𝑀 0  0.251 0.0026 (0.245, 0.256) (0.244, 0.258) 
𝐻   48.5% 0.41% (47.7%, 49.3%) (47.4%, 49.6%) 
𝐴   51.7% 0.20% (51.3%, 52.1%) (51.2%, 52.2%) 

Source: Alkire and Seth (2013b)  
 

Similar to 𝑀 0, the confidence interval for 𝐴  is (𝐴 − 𝔷𝜔/2 × 𝑠𝑒𝐴 , 𝐴 + 𝔷𝜔/2 × 𝑠𝑒𝐴), for 𝐻  
is (𝐻 − 𝔷𝜔/2 × 𝑠𝑒𝐻 , 𝐻 + 𝔷𝜔/2 × 𝑠𝑒𝐻) , and for 𝐻 𝑗  is (𝐻 𝑗 − 𝔷𝜔/2 × 𝑠𝑒𝐻𝑗 , 𝐻 𝑗 + 𝔷𝜔/2 ×
𝑠𝑒𝐻𝑗 ) for all 𝑗 = 1, … , 𝑑. It can be seen from the table that the standard error of 𝐻  is 
0.41%, whereas that of 𝐴  is 0.20%. 

8.2.3 Hypothesis Tests 

Confidence intervals are useful for judging the statistical reliability of a point estimate 

when the population parameter is unknown. However, suppose that, somehow, we have 

                                                 

13 Whenever the population standard deviation is unknown or when the sample size is small, one needs to 
use the Student-t distribution to compute the critical values rather than the standard normal distribution. 
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a hypothesis about what the population parameter is. For example, suppose the 

government hypothesizes that the Adjusted Headcount Ratio in India is 0.26. Thus, the 

null hypothesis is ℋ0: 𝑀0 = 0.26 . This has to be tested against any of the three 

alternatives ℋ1: 𝑀0 ≠ 0.26  or ℋ1: 𝑀0 > 0.26  or ℋ1: 𝑀0 < 0.26 . 14  This is a one-

sample test. Note that the first alternative requires a so-called two-tailed test, and each 

of the other two alternatives requires a so-called one-tailed test. Now, suppose a sample 

(either simple random or multistage stratified) 𝑋  of size 𝕟 is collected. We denote the 

estimated Adjusted Headcount Ratio by 𝑀 0 . By the law of large numbers and by the 

central limit theorem, as 𝕟 → ∞ ,  𝑀 0 − 𝑀0 
𝑑→ Normal 0, 𝜎0

2/𝕟 , where 𝜎0
2 =

𝐸 𝑐 𝑖 𝑘 − 𝑀0 2 is the population variance of 𝑀0. The standard error 𝑠𝑒𝑀0  of 𝑀 0 can be 

estimated using either equation (8.11) or (8.30) in the Appendix, whichever is applicable. 

In a two-tail test, the null hypothesis can be rejected against the alternative ℋ1: 𝑀0 ≠
0.26 with (1 − 𝜔) percent confidence if |(𝑀 0 − 0.26)/𝑠𝑒𝑀0 | > |𝔷𝜔/2|.; in words, if the 

absolute value of the statistic is greater than the absolute value of the critical value. An 

equivalent procedure to reject or not the null hypothesis entails, rather than comparing 

the test statistic against the critical value, comparing the significance level against the so-

called 𝑝-value. The 𝑝 -value is defined as the actual probability that the test statistic 

assumes a value greater than the value observed, i.e. it is the probability of rejecting the 

null hypothesis when it is true. 

Let us consider the example of India’s Adjusted Headcount Ratio, reported in Table 8.2, 

where 𝑀 0 = 0.251 and 𝑠𝑒𝑀0 = 0.0026 . Now, |(𝑀 0 − 0.26)/𝑠𝑒𝑀0 | = 3.46 > 2.58 =

𝔷0.5. Thus, with 99% confidence, the null hypothesis can be rejected with respect to the 

alternative 𝑀0 ≠ 0.26  and the corresponding 𝑝-value is 2(1 − Φ[(𝑀 0 − 0.26)/𝑠𝑒𝑀0 ]), 

where Φ stands for the cumulative standard normal distribution. Similarly, in a one-tail 

test to the right, the null hypothesis can be rejected against the alternative ℋ1: 𝑀0 >

0.26 with (1 − 𝜔) percent confidence if (𝑀 0 − 0.26)/𝑠𝑒𝑀0 > 𝔷1−𝜔 . The corresponding 

𝑝-value is [1 − Φ((𝑀 0 − 0.26)/𝑠𝑒𝑀0 )]. Finally, in a one tail test to the left, the null 

hypothesis can be rejected against the alternative ℋ1: 𝑀0 < 0.26 with (1 − 𝜔) percent 

                                                 

14 We present the tests for country-level estimates but they are equally applicable to other population 
subgroups. Also, we only present the tests in terms of the 𝑀0 measure, but again they are also applicable to 
𝐴, 𝐻, and 𝐻𝑗  for all 𝑗. and so we have chosen not to repeat the results. 
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confidence, if (𝑀 0 − 0.26)/𝑠𝑒𝑀0 < 𝔷𝜔 , where the relevant 𝑝 -value is Φ((𝑀 0 −
0.26)/𝑠𝑒𝑀0 ).15 

Note that the conclusions based on the confidence intervals and the one-sample tests are 

identical. If the value at the null hypothesis lies outside of the confidence interval, then 

the test will also show that null hypothesis is rejected. On the other hand, if the value at 

the null hypothesis lies inside the confidence interval, then the test cannot reject the null 

hypothesis. 

Formal tests are also required in order to understand whether a change in the estimate 

over time—or a difference between the estimates of two countries—has been statistically 

significant. The difference is that this is a two-sample test. We assume that the two 

estimates whose difference is of interest are estimated from two independent samples.16 

For example, when we are interested in testing the difference in 𝑀0 across two countries, 

across rural and urban areas, or across population subgroups, it is safe to assume that the 

samples are drawn independently. A somewhat different situation may arise with a 

change over time. It is possible that the samples are drawn independently of each other 

or that the samples are drawn from the same population in order to track changes over 

time, as, for example, in panel datasets. This section restricts its attention to assessments 

in which we can assume independent samples. 

Suppose there are two countries, Country I and Country II. The population achievement 

matrices are denoted by 𝑋𝐼  and 𝑋𝐼𝐼 ,  respectively, and the population Adjusted 

Headcount Ratios are denoted by 𝑀0,𝐼 and 𝑀0,𝐼𝐼 , respectively. We seek to test the null 

hypothesis ℋ0: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 = 0 , which implies that poverty in country I is not 

significantly different from poverty in country II in any of the three alternatives: 

ℋ1: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 ≠ 0 which means that one of the two countries is significantly poorer 

than the other; or ℋ1: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 > 0 , which means that country I is significantly 

poorer than country II; or ℋ1: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 < 0, which means the opposite. For the first 

alternative, we need to conduct a two-tailed test, and for the other two alternatives, we 

need to conduct a one-tailed test. 

                                                 

15 See Bennett and Mitra (2013) for an exposition of hypothesis testing of 𝑀0 and other AF partial sub-
indices using a minimum p-value approach. 
16 See chapters 14 and 16 of Duclos and Araar (2006) for further discussion on non-independent samples 
for panel data analysis. 
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Now, suppose a sample (either simple random or multistage stratified) 𝑋 𝐼 of size 𝕟𝐼 is 

collected from 𝑋𝐼 and a sample 𝑋 𝐼𝐼  of size 𝕟𝐼𝐼 is collected from 𝑋𝐼𝐼 , where samples in 

𝑋 𝐼 and 𝑋 𝐼𝐼  are assumed to have been drawn independently of each other. We denote the 

estimated Adjusted Headcount Ratios from the samples by 𝑀 0,𝐼 and 𝑀 0,𝐼𝐼, respectively. 

By the law of large numbers and the central limit theorem, 

 𝑀 0,𝐼 − 𝑀0,𝐼 
𝑑→ Normal 0, 𝜎0,𝐼

2 /𝑛 𝐼  and  𝑀 0,𝐼𝐼 − 𝑀0,𝐼𝐼 
𝑑→ Normal 0, 𝜎0,𝐼𝐼

2 /𝑛 𝐼𝐼 . The 

difference of two normal distributions is a normal distribution as well. Thus,  

   𝑀 0,𝐼 − 𝑀 0,𝐼𝐼 −  𝑀0,𝐼 − 𝑀0,𝐼𝐼  
𝑑→ Normal 0,𝜎0,𝐼−𝐼𝐼2  , (8.3) 

where 𝜎0,𝐼−𝐼𝐼
2 = 𝜎0,𝐼

2

𝕟𝐼 + 𝜎0,𝐼𝐼
2

𝕟𝐼𝐼 . Note that, as we have assumed independent samples, the 

covariance between the two Adjusted Headcount Ratios is zero. Hence, the standard 

error of 𝑀 0,𝐼 − 𝑀 0,𝐼𝐼, denoted by 𝑠𝑒𝑀0,𝐼−𝐼𝐼 , may be estimated using equations (8.11) or 

(8.30) in the Appendix, whichever is applicable, as: 

 𝑠𝑒𝑀0,𝐼−𝐼𝐼 =  𝑠𝑒𝑀0,𝐼
2 + 𝑠𝑒𝑀0,𝐼𝐼

2 , (8.4) 

where 𝑠𝑒𝑀0,𝐼
2  is the standard error of 𝑀 0,𝐼 and 𝑠𝑒𝑀0,𝐼𝐼

2  is the standard error of 𝑀 0,𝐼𝐼 . Like 

the one-sample test discussed above, in the two-tail test, the null hypothesis can be 

rejected against the alternative ℋ1: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 ≠ 0 with (1 − 𝜔) percent confidence, if 

|[(𝑀 0,𝐼 − 𝑀 0,𝐼𝐼) − (𝑀0,𝐼 − 𝑀0,𝐼𝐼)]/𝑠𝑒𝑀0,𝐼−𝐼𝐼|  > |𝔷𝜔/2| . Given that at the null 

hypothesis 𝑀0,𝐼 − 𝑀0,𝐼𝐼 = 0, this implies requiring |(𝑀 0,𝐼 − 𝑀 0,𝐼𝐼)/𝑠𝑒𝑀0,𝐼−𝐼𝐼|  > |𝔷𝜔/2|. 

Similarly, in order to reject the null hypothesis against ℋ1: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 > 0, we require 

(𝑀 0,𝐼 − 𝑀 0,𝐼𝐼)/𝑠𝑒𝑀0,𝐼−𝐼𝐼  > 𝔷1−𝜔  and against ℋ1: 𝑀0,𝐼 − 𝑀0,𝐼𝐼 < 0, we require (𝑀 0,𝐼 −
𝑀 0,𝐼𝐼)/𝑠𝑒𝑀0,𝐼−𝐼𝐼  < 𝔷𝜔 . The corresponding 𝑝-values can be computed as discussed in the 

one-sample test. 

Table 8.3 presents an example of an estimation of MPI (an adaptation of 𝑀0) in four 

Indian states: Goa, Punjab, Andhra Pradesh, and Tripura, with their corresponding 

standard errors, confidence intervals and hypothesis tests.17 These results are computed 

from the Demographic and Health Survey of India for the years 2005–2006. In the table 

we can see that the MPI point estimate for Goa is 0.057, and with 95% confidence, we 

                                                 

17 Alkire and Seth (2013b) use an MPI harmonized for strict comparability of indicator definitions across 
time. 



Alkire, Foster, Seth, Santos, Roche and Ballon  8: Robustness Analysis 

OPHI Working Paper 89  www.ophi.org 17 

can say that the MPI estimate of Goa lies somewhere between 0.045 and 0.069. Similarly, 

we can say with 95% confidence that Punjab’s MPI is not larger than 0.103 and no less 

than 0.073, although the point estimate of MPI is 0.088. We can also state, after doing 

the corresponding hypothesis test, that Punjab is significantly poorer than Goa. 

However, we cannot draw the same kind of conclusion for the comparison between 

Andhra Pradesh and Tripura, although the difference between the MPI estimates of 

these two states (0.032) is similar to the difference between Goa and Punjab. 

Table 8.3 Comparison of Indian States Using Standard Errors 

States MPI Standard 
Error 

95% Confidence 
Interval 

 Difference 

Lower 
Bound 

Upper 
Bound 

 MPI Statistically 
Significant 

Goa 0.057 0.0062 0.045 0.069  0.031 Yes Punjab 0.088 0.0078 0.073 0.103  
Andhra Pradesh 0.194 0.0093 0.176 0.212  0.032 No Tripura 0.226 0.0162 0.195 0.258  
Source: Alkire and Seth (2013b) 

 
It is vital to understand that in two sample tests, conclusions about the statistical 

significance obtained with confidence intervals do not necessarily coincide with 

conclusions obtained using hypothesis testing. Let us formally examine the situation. 

Suppose, 𝑀 0,𝐼 > 𝑀 0,𝐼𝐼 . If the confidence intervals do not overlap, then the lower bound 

of 𝑀 0,𝐼  is larger than the upper bound of 𝑀 0,𝐼𝐼 , i.e. 𝑀 0,𝐼 − 𝔷𝜔/2 × 𝑠𝑒𝑀0,𝐼 > 𝑀 0,𝐼𝐼 +

𝔷𝜔/2 × 𝑠𝑒𝑀0,𝐼𝐼  or [𝑀 0,𝐼 − 𝑀 0,𝐼𝐼]/[𝑠𝑒𝑀0,𝐼 + 𝑠𝑒𝑀0,𝐼𝐼 > 𝔷𝜔/2 . Given that for two 

independent samples, 𝑠𝑒𝑀0,𝐼 + 𝑠𝑒𝑀0,𝐼𝐼 > 𝑠𝑒𝑀0,𝐼−𝐼𝐼 , if the confidence intervals do not 

cross, a statistically significant comparison can be made. However, if the confidence 

intervals overlap, it does not necessarily mean that the comparison is not statistically 

significant at the same level of significance. It is thus essential to conduct statistical tests 

on differences when the confidence intervals overlap. 

8.3 Robustness Analysis with Statistical Inference 

In practice, the robustness analyses discussed in section 8.1 are typically performed with 

estimates from sample surveys. In at least two cases, it is necessary to combine the 

robustness analyses with the statistical inference tools just described. This section 

describes how to do so in practice. 

The dominance analysis presented in section 8.1.1 assesses dominance between two 

CCDFs or two 𝑀0 curves in order to conclude whether a pairwise ordering is robust to 
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the choice of all poverty cutoffs. But it is also crucial to examine if the pairwise 

dominance of the CCDFs or 𝑀0 curves are statistically significant. For two entities in a 

pairwise ordering, one should perform one-tailed hypothesis tests of the difference in the 

two 𝑀0 estimates for each possible 𝑘  value, as described in section 8.2.3. This will 

determine whether the two countries’ poverty estimates are not significantly different or 

whether one is significantly poorer than the other regardless of the poverty cutoff.18 One 

may also construct confidence interval curves around each CCDF curve (or 𝑀0 curve) 

and examine whether two corresponding confidence interval curves overlap or not, in 

order to conclude dominance. More specifically, if the lower confidence interval curve of 

a unit does not overlap with the upper confidence interval curve of another unit, then 

one may conclude that statistically significant dominance holds between two entities. 

However, as explained at the end of section 8.2.3, no conclusion on statistical 

significance can be made when the confidence intervals overlap. Thus a hypothesis test 

for dominance should be preferred.19  

This need to combine methods also applies to the other type of robustness analysis 

presented in section 8.1.2, in the sense that one can implement this analysis to a ranking 

of entities and report the proportion of robust pairwise comparisons across the different 

𝑘  values. Moreover, the analysis described in section 8.2.3 (hypothesis testing or 

comparison of confidence intervals by pairs of entities) can be implemented not only 

with respect to the poverty cutoff but also with respect to changes in the other 

parameters, such as weights, deprivation cutoffs or alternative indicators. 

As Alkire and Santos observe (2014: 260), the number of robust pairwise comparisons 

may be expressed in two ways. One may report the proportion of the total possible pairwise 

comparisons that are robust. A somewhat more precise option is to express it as a 

proportion of the number of significant pair-wise comparisons in the baseline measure, because a 

pairwise comparison that was not significant in the baseline 𝑀0 cannot, by definition, be 

a robust pairwise comparison. 

To interpret results meaningfully, it can be helpful to observe that the proportion of 

robust pairwise comparisons of alternative 𝑀0  specifications is influenced by: the 

number of possible pairwise comparisons, the number of significant pairwise 

                                                 

18 For formal tests on stochastic dominance in unidimensional poverty and welfare analysis, see Anderson 
(1996), Davidson and Duclos (2000), and Barrett and Donald (2003). 
19 Other new ways of testing robustness may be developed in the near future. 
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comparisons in the baseline distribution, and the number of alternative parameter 

specifications. Interpretation of the percentage of robust pairwise comparisons in light of 

these three factors illuminates the degree to which the poverty estimates and the policy 

recommendations they generate are valid across alternative plausible design 

specifications. 

Alkire and Santos (2014) perform both types of robustness analysis with the global MPI 

(2010 estimates) for every possible pair of countries with respect to: (a) a restricted range 

of 𝑘 values, namely, 20% to 40%; (b) four alternative sets of plausible weights; and (c) to 

subgroup-level MPI values. 20 The country rankings seem highly robust to alternative 

parameters’ specifications.21 

Chapter 9 further develops the techniques of multidimensional poverty measurement 

and analysis. Specifically, we present techniques for analysing poverty over time (with 

and without panel data) and for exploring distributional issues such as inequality among 

the poor. 

Appendix: Methods for Computing Standard Errors 

This appendix provides a technical outline of how standard errors may be computed. We 

first present the analytical approach and then the bootstrap method using the notation in 

Method I presented in Box 5.7. For the multidimensional and censored headcount ratios, 

we use the notation in Box 5.4. The 𝑀0 and its partial indices are written as 

 𝑀0 𝑋; 𝑧, 𝑤, 𝑘 =
 𝑐𝑖 𝑘 𝑛

𝑖=1
𝑛 . (8.5) 

 
𝐴 𝑋; 𝑧, 𝑤, 𝑘 =

 𝑐𝑖 𝑘 𝑞
𝑖=1

𝑞 . (8.6) 

 𝐻 𝑋; 𝑧, 𝑤, 𝑘 =
 𝕀 𝑐𝑖 ≥ 𝑘 𝑛

𝑖=1
𝑛 . (8.7) 

 
ℎ𝑗  𝑋; 𝑧, 𝑤, 𝑘 =

 𝕀  𝑐𝑖 ≥ 𝑘    𝑔𝑖𝑗
0 = 1  𝑛

𝑖=1

𝑛 . (8.8) 

                                                 

20 They compute the MPI for four population subgroups: children 0–14 years of age, women 15–49 years 
of age, women aged 50 years and older, and men 15 years and older, and test the rankings of subgroup 
MPIs across countries.  
21 Further methodological work is needed to propose overall robustness standards for measures that will 
be used for policy. 
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Note that   is the logical ‘and’ operator. The standard errors of the subgroups’ 𝑀0s and 

partial indices may be computed in the same way and so we only outline the standard 

errors of equations (8.5)–(8.8). 

Simple Random Sampling with Analytical Approach 

Suppose 𝕟  samples have been collected through simple random sampling from the 

population. We denote the dataset by 𝑋  and its 𝑖𝑗th element by 𝑥 𝑖𝑗  for all 𝑖 = 1, … , 𝕟 and 

𝑗 = 1, … , 𝑑 . We denote the deprivation status score for 𝑥 𝑖𝑗  by 𝑔 𝑖𝑗0 . For statistical 

inferences, our analysis focuses on the censored deprivation scores. The score, defined at 

the population level, becomes a random variable while performing statistical inference. 

We assume that a random sample (of size 𝕟 ) of censored deprivation scores 

{𝑐1(𝑘), … , 𝑐𝕟(𝑘)} is a sequence of independently and identically distributed random 

variables with an expected value 𝐸 𝑐𝑖 𝑘  = 𝑀0  and Var (𝑐𝑖(𝑘)) = 𝜎0
2 . Then as 𝕟 

approaches infinity, the random variable  𝕟 𝑀 0 − 𝑀0  converges in distribution to 

Normal 0, 𝜎0
2 , where 𝑀 0 = ( 𝑐𝑖 𝑘 𝕟

𝑖=1 )/𝕟. That is 

  𝕟 𝑀 0 − 𝑀0 
𝑑→ Normal 0,𝜎0

2 . (8.9) 

The unbiased sample estimate of 𝜎0
2 is 

 𝜎 0
2 =

1
𝕟 − 1

  𝑐𝑖 𝑘 − 𝑀 0 
2𝕟

𝑖=1
, (8.10) 

and the standard error of the Adjusted Headcount Ratio is 

 
𝑠𝑒𝑀 0 =

𝜎 0

 𝕟 − 1
=

1
𝕟 − 1

   𝑐𝑖 𝑘 − 𝑀 0 
2𝕟

𝑖=1
. (8.11) 

The analytical approach based on the central limit theorem (CLT) also applies to the 

calculation of the standard errors of 𝐻, which leads to 

  𝕟 𝐻 − 𝐻 𝑑→ Normal 0, 𝜎𝐻2 , (8.12) 

where 𝐻 = [ 𝕀 𝑐𝑖 ≥ 𝑘 𝕟
𝑖=1 )/𝕟 and 𝜎𝐻

2 = 𝐸 𝕀 𝑐 𝑖 ≥ 𝑘 − 𝐻 2. Note that unlike 𝑀0, 𝐻 is 

an average across 0s and 1s, i.e. the mean is a proportion and 𝜎𝐻
2  is estimated as 

 𝜎 𝐻2  = 𝐻  1 − 𝐻  , (8.13) 

and so the unbiased standard error is 
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𝑠𝑒𝐻 =

𝜎 𝐻
 𝕟 − 1

=  𝐻  1 − 𝐻  
𝕟 − 1

. (8.14) 

With the same logic, the standard error for ℎ𝑗 , can be estimated as 

 
𝑠𝑒ℎ 𝑗 =

𝜎 ℎ𝑗

 𝕟 − 1
=  ℎ 𝑗  1 − ℎ 𝑗  

𝕟 − 1
, (8.15) 

where, ℎ 𝑗 = [ 𝕀[𝑐𝑖 ≥ 𝑘   (𝑔 𝑖𝑗
0 = 1)]𝕟

𝑖=1 )/𝕟. 

The formulation of 𝐴 is analogous to the formulation of 𝑀0, and so the standard error 

of 𝐴) is computed as 

 
𝑠𝑒𝐴 =

𝜎 𝐴
 𝕢 − 1

=
1

𝕢 − 1
   𝑐𝑖 𝑘 − 𝐴  2𝕢

𝑖=1
, (8.16) 

where 𝐴 = ( 𝑐𝑖 𝑘 𝕢
𝑖=1 )/𝕢 and 𝕢 is the number multidimensionally poor in the sample.  

Note that if the number of multidimensionally poor is extremely low, the sample size for 

estimating 𝑠𝑒𝐴  may not be large enough. This may affect the precision of 𝑠𝑒𝐴  using 

(8.16). It may then be accurate to treat 𝐴 as a ratio of 𝑀0 and 𝐻 for computing 𝑠𝑒𝐴 . By 

the Taylor series expansion (see the discussion in Casella and Berger 1990: 240–245), 𝐴  
can be approximated as 𝐴 ≈ 𝑀 0/𝐻  and 𝜎𝐴

2 can be estimated as 

 
𝜎 𝐴2 ≈  𝑀

 0

𝐻  
2

 𝜎 𝐻
2

𝐻 2 +
𝜎 0

2

𝑀 0
2 − 2𝜎 0,𝐻2

𝐻 𝑀 0
 . (8.17) 

where 𝜎 0
2 and 𝜎 𝐻

2  are based on (8.10) and (8.13), respectively, and 𝜎 0,𝐻
2  can be estimated 

as 

 𝜎 0,𝐻2 =
1

𝕟 − 1
  𝕀 𝑐𝑖 ≥ 𝑘 − 𝐻  [𝑐𝑖 𝑘 − 𝑀 0]

𝕟

𝑖=1
= 𝑀 0(1 − 𝐻 ). (8.18) 

By combining (8.17) and (8.18), the alternative formulation becomes 

 
𝑠𝑒𝐴 =

𝜎 𝐴
 𝕟 − 1

≈  1
𝕟 − 1  𝑀

 0

𝐻  
2

 𝜎 𝐻
2

𝐻 2 +
𝜎 0

2

𝑀 0
2 − 2(1 − 𝐻 )

𝐻  . (8.19) 
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Stratified Sampling with an Analytical Approach 

We next discuss the estimation of standard errors when samples are collected through 

two-stage stratification. 22  Using information on the population characteristics, the 

population is partitioned into several strata. The first stage, from each stratum, draws a 

sample of PSUs with or without replacement. The second stage draws samples either 

with or without replacement, from each PSU.  

We suppose that the population is partitioned into 𝒮 > 1 strata and there are 𝒫𝓈 PSUs in 

the 𝓈th strata for all 𝓈 = 1, … , 𝒮. The population size of the 𝒿th PSU in the 𝓈th stratum is 

𝑛𝒿𝓈  so that 𝑛 =   𝑛𝒿𝓈
𝒫𝓈
𝒿=1

𝒮
𝓈=1 . We denote the total number of poor by 𝑞  and the 

number of poor in the 𝒿th PSU in the 𝓈th strata by 𝑞𝒿𝓈. The population 𝑀0 measure and 

its partial indices are presented in (8.20)–(8.23) with the same notation for the identity 

function as in (8.5)–(8.8). 

 𝑀0(𝑋; 𝑧, 𝑤, 𝑘) =
1
𝑛   𝑐𝑖𝒿𝓈(𝑘)

𝑛𝒿𝓈

𝑖=1

𝒫𝓈

𝒿=1

𝒮

𝓈=1
 (8.20) 

 𝐴(𝑋; 𝑧, 𝑤, 𝑘) =
1
𝑞   𝑐𝑖𝒿𝓈(𝑘)

𝑞𝒿𝓈

𝑖=1

𝒫𝓈

𝒿=1

𝒮

𝓈=1
 (8.21) 

 𝐻(𝑋; 𝑧, 𝑤, 𝑘) =
1
𝑛   𝕀 𝑐𝑖𝒿𝓈 ≥ 𝑘 

𝑛𝒿𝓈

𝑖=1

𝒫𝓈

𝒿=1

𝒮

𝓈=1
 (8.22) 

 ℎ𝑗  𝑋; 𝑧, 𝑤, 𝑘 =
1
𝑛   𝕀  𝑐𝑖𝒿𝓈 ≥ 𝑘 ∧ (𝑔𝑖𝒿𝓈,𝑗

0 = 1) 
𝑛𝒿𝓈

𝑖=1

𝒫𝓈

𝒿=1

𝒮

𝓈=1
 (8.23) 

Note that 𝑔𝑖𝒿𝓈,𝑗
0 = 1 if the 𝑖th person from the 𝒿th PSU in the 𝓈th stratum is deprived in 

the 𝑗 th dimension and 𝑔𝑖𝒿𝓈,𝑗
0 = 0  otherwise; and 𝑐𝑖𝒿𝓈  and 𝑐𝑖𝒿𝓈(𝑘)  are the deprivation 

score and the censored deprivation score of the 𝑖th person from the 𝒿th PSU in the 𝓈th 

stratum, respectively. Thus, 𝑐𝑖𝒿𝓈 =  𝑤𝑗
𝑑
𝑗=1 𝑔𝑖𝒿𝓈,𝑗

0 ; and 𝑐𝑖𝒿𝓈 𝑘 = 𝑐𝑖𝒿𝓈  if 𝑐𝑖𝒿𝓈 ≥ 𝑘  and 

𝑐𝑖𝒿𝓈 𝑘 = 0 otherwise. 

Now, suppose a sample of size 𝕟 is collected through a two-stage stratified sampling. 

The first stage selects 𝓅𝓈 PSUs from the 𝓈th stratum for all 𝓈. The second stage selects 

𝕟𝒿𝓈 samples from the 𝒿th PSU in thstratum 𝓈. So, 𝕟 =   𝕟𝓈𝒿
𝓅𝓈
𝒿=1

𝒮
𝓈=1 . Each sample 𝑖 in 

the 𝒿th PSU in the 𝓈th stratum is assigned a sampling weight 𝑊𝑖𝒿𝓈 , which are summarized 

                                                 

22  Appendix D of Seth (2013) gives an example of standard error estimation for one-stage sample 
stratification in the multidimensional welfare framework; for consumption/expenditure see Deaton (1997). 
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by an 𝕟-dimensional vector 𝑊. The achievements are summarized by matrix 𝑋 , which is 

a typical sample dataset.  

In order to estimate the measure from the sample, first, the total population and the total 

number of poor should be estimated from the sample. We denote the estimates of the 

population 𝑛 by 𝒩 and the estimate of the poor population 𝑞 by 𝒬. Then, 

 𝒩 =    𝑊𝑖𝒿𝓈
𝕟𝒿𝓈

𝑖=1

𝓅𝓈

𝒿=1

𝒮

𝓈=1
 (8.24) 

 𝒬 =    𝑊𝑖𝒿𝓈
𝕢𝒿𝓈

𝑖=1

𝓅𝓈

𝒿=1

𝒮

𝓈=1
 (8.25) 

The sample estimates of the population averages in (8.20)–(8.23) are presented in (8.26)–

(8.29). 

 𝑀 0 =
1
𝒩     𝑊𝑖𝒿𝓈𝑐𝑖𝒿𝓈 𝑘 

𝕟𝒿𝓈

𝑖=1

𝓅𝓈

𝒿=1

𝒮

𝓈=1
  (8.26) 

 𝐴 =
1
𝒬     𝑊𝑖𝒿𝓈𝑐𝑖𝒿𝓈 𝑘 

𝕢𝒿𝓈

𝑖=1

𝓅𝓈

𝒿=1

𝒮

𝓈=1
  (8.27) 

 𝐻 =
1
𝒩    𝑊𝑖𝒿𝓈𝕀 𝑐𝑖𝒿𝓈 ≥ 𝑘 

𝕟𝒿𝓈

𝑖=1

𝓅𝓈

𝒿=1

𝒮

𝓈=1
  (8.28) 

 ℎ 𝑗 =
1
𝒩     𝑊𝑖𝒿𝓈𝕀  𝑐𝑖𝒿𝓈 ≥ 𝑘 ∧   𝑔𝑖𝒿𝓈,𝑗

0 = 1  
𝕟𝒿𝓈

𝑖=1

𝓅𝓈

𝒿=1

𝒮

𝓈=1
  (8.29) 

As each sample estimate is a ratio of two estimators, their standard errors are 

approximated using (8.17) and using equations (1.31) and (1.63) in Deaton (1997). The 

standard error for 𝑀 0 in (8.26) is 

 
𝑠𝑒𝑀 0 =

1
𝒩      𝑊𝑖𝒿𝓈𝑐𝑖𝒿𝓈 𝑘 

𝕟𝒿𝓈

𝑖=1
− 𝑀 0

𝓈 −  𝑊𝒿𝓈 − 𝑊 𝓈 𝑀 0 
2𝓅𝓈

𝒿=1

𝒮

𝓈=1
, (8.30) 

where 𝑀 0
𝓈 =    𝑊𝑖𝒿𝓈𝑐𝑖𝒿𝓈 𝑘 𝕟𝒿𝓈

𝑖=1
𝓅𝓈
𝒿=1  /    𝑊𝑖𝒿𝓈

𝕟𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  , , 𝑊 𝓈 =    𝑊𝑖𝒿𝓈

𝕟𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  /

  𝕟𝒿𝓈
𝓅𝓈
𝒿=1   and 𝑊𝒿𝓈 =  𝑊𝑖𝒿𝓈

𝕟𝒿𝓈
𝑖=1 .  

The standard errors of 𝐻  and ℎ 𝑗  are 

𝑠𝑒𝐻 =
1
𝒩      𝑊𝑖𝒿𝓈𝕀 𝑐𝑖𝒿𝓈 ≥ 𝑘 

𝕟𝒿𝓈

𝑖=1
− 𝐻 𝓈 −  𝑊𝒿𝓈 − 𝑊 𝓈 𝐻  

2𝓅𝓈

𝒿=1

𝒮

𝓈=1
 (8.31) 
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𝑠𝑒ℎ 𝑗 =
1
𝒩      𝑊𝑖𝒿𝓈𝕀  𝑐𝑖𝒿𝓈 ≥ 𝑘 ∧  𝑔𝑖𝒿𝓈,𝑗

0 = 1  
𝕟𝒿𝓈

𝑖=1
− ℎ 𝑗𝓈 −  𝑊𝒿𝓈 − 𝑊 𝓈 ℎ 𝑗  

2𝓅𝓈

𝒿=1

𝒮

𝓈=1
  

 (8.32) 

where 𝐻 𝓈 =    𝑊𝑖𝒿𝓈𝕀 𝑐𝑖𝒿𝓈 ≥ 𝑘 𝕟𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  /   𝑊𝑖𝒿𝓈

𝕟𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1   and 

ℎ 𝑗𝓈 =    𝑊𝑖𝒿𝓈𝕀  𝑐𝑖𝒿𝓈 ≥ 𝑘 ∧  𝑔𝑖𝒿𝓈,𝑗
0 = 1  𝕟𝒿𝓈

𝑖=1
𝓅𝓈
𝒿=1  /   𝑊𝑖𝒿𝓈

𝕟𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  . Terms 𝑊 𝓈  and 

𝑊𝒿𝓈 are the same as in (8.30). 

Finally, we present the standard error for 𝐴  in (8.27), where the denominator is 𝒬 instead 

of 𝒩 as 

 
𝑠𝑒𝐴 =

1
𝒬      𝑊𝑖𝒿𝓈𝑐𝑖 𝑘 

𝕢𝒿𝓈

𝑖=1
− 𝐴 𝓈 −  𝒲𝒿𝓈 − 𝒲 𝓈 𝐴  

2𝓅𝓈

𝒿=1

𝒮

𝓈=1
, (8.33) 

where 𝐴 𝓈 =    𝑊𝑖𝒿𝓈𝑐𝑖𝒿𝓈 𝑘 𝕢𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  /   𝑊𝑖𝒿𝓈

𝕢𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  , 𝒲 𝓈 =    𝑊𝑖𝒿𝓈

𝕢𝒿𝓈
𝑖=1

𝓅𝓈
𝒿=1  /

  𝕢𝒿𝓈
𝓅𝓈
𝒿=1    and 𝒲𝒿𝓈 =  𝑊𝑖𝒿𝓈

𝑞 𝒿𝓈
𝑖=1 . Intuitively, 𝐴 𝓈 is the estimated average intensity for 

stratum 𝓈, 𝒲 𝓈 is the average of sampling weights in stratum 𝓈 across the poor, and 𝒲𝒿𝓈 

is the sum of all sampling weights in PSU 𝒿 of stratum 𝓈 also across the poor. 

As a reasonably smaller sample size may affect the precision of the standard error of 𝐴 

the variance 𝑣𝑎𝑟𝐴 can be approximated as in (8.17), but using (8.30) and (8.31) as 

 
𝑣𝑎𝑟 𝐴 ≈  𝑀

 0

𝐻  
2

 𝑠𝑒𝐻
2

𝐻 2 +
𝑠𝑒𝑀0

2

𝑀 0
2 − 2𝜎 0,𝐻2

𝐻 𝑀 0
 , (8.34) 

where  

𝜎 0,𝐻
2 =

1
𝒩2      𝑊𝑖𝒿𝓈𝑐𝑖𝒿𝓈 𝑘 

𝕟𝒿𝓈

𝑖=1

− 𝑀 0
𝓈 −  𝑊𝒿𝓈 − 𝑊 𝓈 𝑀 0    𝑊𝑖𝒿𝓈𝕀 𝑐𝑖𝒿𝓈 ≥ 𝑘 

𝕟𝒿𝓈

𝑖=1

− 𝐻 𝓈 −  𝑊𝒿𝓈 − 𝑊 𝓈 𝐻  
𝓅𝓈

𝒿=1

𝒮

𝓈=1

.  

(8.35) 

Hence, combining (8.34) and (8.35), we have 

 𝑠𝑒𝐴 =  𝑣𝑎𝑟 𝐴 . (8.36) 

Note that the analytical standard errors and confidence intervals may not serve too well 

when the sample sizes are small or when the estimates are too close to the natural upper 
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or lower bounds. 23  In these cases, resampling non-parametric methods, such as 

bootstrap, may be more suitable for computing standard errors and confidence intervals.  

The Bootstrap Method 

An alternative approach for statistical inference is the ‘bootstrap’, which is a data-based-

simulation method for assessing statistical accuracy. Introduced in 1979, it provides an 

estimate of the sampling distribution of a given statistic 𝜃, such as the standard error, by 

resampling from the original sample (cf. Efron 1979; Efron and Tibshirani 1993). It has 

certain advantages over the analytical approach. First, the inference on summary statistics 

does not rely on CLT as the analytical approach. In particular, for reasonably small 

sample size, standard errors/confidence intervals computed through the CLT-based 

asymptotic approximation may be inaccurate. Second, the bootstrap can automatically 

take into account the natural bounds of the measure. Confidence intervals using the 

analytical approach can lie outside natural bounds, which can be prevented when the 

bootstrap re-sampling distribution of the statistic is directly used. 

Third, the computation of standard errors may become complex when the estimator and 

its standard error have a complicated form or have a no-closed expression. These types 

of complexities are common both in the context of statistical inference of inequality or 

poverty measurement and in tests where comparisons of group inequality or poverty 

(across gender or region) are of particular interest (Biewen 2002). Although, the delta-

method can handle these analytical standard errors from stochastic dependencies, but 

when the number of time periods or groups increases, computing the standard errors 

analytically can easily become cumbersome (cf. Cowell 1989, Nygard and Sandström 

1989). In practice, Monte Carlo evidence suggests that bootstrap methods are preferred 

for these analyses and shows that the simplest bootstrap procedure achieves the same 

accuracy as the delta-method (Biewen 2002; Davidson and Flachaire 2007). In 

developing economics,  bootstrap has been used to draw statistical inferences for poverty 

and inequality measurement (Mills and Zandvakili 1997; Biewen 2002). 

Here we briefly illustrate the use of the bootstrap for computing standard errors. Readers 

interested in using the bootstrap for confidence interval estimation and hypothesis 

testing can refer to Efron and Tibshirani (1993), chapters 12 and 16, respectively. 
                                                 

23 When the estimate is too close to the natural upper and lower bounds (0 and 1), the confidence intervals 
using analytical standard error may fall outside these bounds. Different methods for adjustments are 
available. For a discussion of such methods, see Newcombe (1998). 
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The bootstrap algorithm can be described as a resampling technique, which is conducted 

𝔹 number of times by generating a random artificial sample each time, with replacement 

from the original sample, which is our dataset 𝑋 . The 𝕓th resample produces an estimate 

𝜃 ∗𝕓  for all = 1, … , 𝕓, … , 𝔹. Thus, we have a set of 𝔹 resample estimates of 𝜃 : {𝜃 ∗1,

… , 𝜃 ∗𝕓, … , 𝜃 ∗𝔹} . If the artificial samples are independent and identically distributed 

(i.i.d.), the bootstrap standard error estimator of 𝜃 , denoted 𝑠𝑒𝕓,𝜃 , is defined as 

 
𝑠𝑒𝕓,𝜃 =    𝜃 ∗𝕓 − 𝜃 ∗ 2

𝔹 − 1

𝔹

𝕓=1
 

1/2

 (8.37) 

where 𝜃 ∗
stands for the arithmetic mean over the artificial samples. Even if the artificial 

sample is drawn from a more complex but known sampling framework, the bootstrap 

standard error can be easily estimated from standard formulas (cf. Efron 1979; Efron 

and Tibshirani 1993). If the resampling is conducted on an empirical distribution of a 

given dataset 𝑋 , then it is referred to as a non-parametric bootstrap. In this case, each 

observation is sampled (with replacement) from the empirical distribution, with 

probability inversely proportional to the original sample size. However, the resampling 

can also be selected from a known distribution chosen on an empirical or theoretical 

basis.  In this case, it is referred to as a parametric bootstrap.  

Box 8.1 Bootstrap Standard Errors of Adjusted Headcount Ratio and Partial Indices 

 Step 1: 
Bootstrap 
Samples 

Step 2: Bootstrap  
Replications of Estimates 

Empirical 
Distribution 

(Original 
Sample)  

  Resample 1 ⟶  𝑀 0
∗1, 𝐻 ∗1,𝐴 ∗1,ℎ 𝑗∗1  

 Resample 2 ⟶  𝑀 0
∗2, 𝐻 ∗2,𝐴 ∗2,ℎ 𝑗∗2  

⋮ ⋮  
 Resample 𝕓 ⟶  𝑀 0

∗𝕓, 𝐻 ∗𝕓,𝐴 ∗𝕓, ℎ 𝑗∗𝕓  
⋮ ⋮  

 Resample 𝔹 ⟶  𝑀 0
∗𝔹, 𝐻 ∗𝔹,𝐴 ∗𝔹, ℎ 𝑗∗𝔹  

 

Step 3: 
Standard 
Errors 

𝑠𝑒𝕓,𝑀 0 =  1
𝔹−1

  𝑀 0
∗𝕓 − 𝑀 0

∗ 2𝔹
𝕓=1  

1/2
, 𝑀 0

∗ = 1
𝔹 𝑀 0

∗𝕓𝔹
𝕓=1  

𝑠𝑒𝕓,𝐻 =  1
𝔹−1

  𝐻 ∗𝕓 − 𝐻 ∗ 2𝔹
𝕓=1  

1/2
, 𝐻 ∗ = 1

𝔹 𝐻 ∗𝕓𝔹
𝕓=1  

𝑠𝑒𝕓,𝐴 =  1
𝔹−1

  𝐴 ∗𝕓 − 𝐴 ∗ 2𝔹
𝕓=1  

1/2
, 𝐴 ∗ = 1

𝔹 𝐴 ∗𝕓𝔹
𝕓=1  

𝑠𝑒𝕓,ℎ 𝑗 =  1
𝔹−1

  ℎ 𝑗∗𝕓 − ℎ 𝑗∗ 
2𝔹

𝕓=1  
1/2

, ℎ 𝑗∗ = 1
𝔹 ℎ 𝑗∗𝕓𝔹

𝕓=1  
Source: Efron and Tibshirani (1993: 47). 
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Box 8.1 illustrates the use of the bootstrap for computing standard errors of the 𝑀0 and 

its partial indices. In this case, the statistic 𝜃  comprises 𝑀0 , 𝐻 , 𝐴 , and ℎ𝑗 . Thus, the 

estimate 𝜃  includes 𝑀 0, 𝐻 , 𝐴 , or ℎ 𝑗 . To obtain the bootstrap standard errors, we need to 

pursue the following steps.  

1. Draw 𝔹 bootstrap resamples from the empirical distribution function.  
2. Compute the set of 𝔹 relevant bootstrap estimates of 𝑀 0

∗𝕓 , 𝐻 ∗𝕓 , 𝐴 ∗𝕓,  or ℎ 𝑗∗𝕓 
from each bootstrap sample.  

3. Estimate the standard errors by the sampling standard deviation of the 𝔹 
replications: 𝑠𝑒𝕓,𝑀 0  , 𝑠𝑒𝕓,𝐻  , 𝑠𝑒𝕓,𝐴 , or 𝑠𝑒𝕓,ℎ 𝑗  (cf. Efron and Tibshirani 1993: 47). 

We have already discussed that the bootstrap approach has certain advantages—

especially that it does not rely on the central limit theorem. Although the non-parametric 

bootstrap approach does not depend on any parametric assumptions, it does involve 

certain choices. The first is the number of replications. Indeed a larger number of 

replications increas the precision of the estimates, but is costly in terms of time. There 

are different approaches for selecting the appropriate number of replications (see Poi 

2004). The second involves the choice of the bootstrap sample size being selected from 

the original sample. The third involves the choice of the resampling method. The 

bootstrap sample size in Efron’s traditional bootstrap is equal to the number of 

observations in the original sample, but the use of smaller sample sizes has also been 

studied (for further theoretical discussions; see Swanepoel (1986) and Chung and Lee 

(2001). 

  



Alkire, Foster, Seth, Santos, Roche and Ballon  8: Robustness Analysis 

OPHI Working Paper 89  www.ophi.org 28 

Bibliography 

Alkire et al. (2010): Alkire, S., Santos, M. E., Seth, S., and Yalonetzky, G. (2010). ‘Is the 
Multidimensional Poverty Index Robust to Different Weights?’ OPHI Research in 
Progress 22a, Oxford University. 

Alkire, S. and Foster, J. (2011a). ‘Counting and Multidimensional Poverty Measurement’. 
Journal of Public Economics, 95(7–8): 476–487. 

Alkire, S. and Santos, M. E. (2010). ‘Acute Multidimensional Poverty: A New Index for 
Developing Countries’. OPHI Working Paper 38, Oxford University; also 
published as Human Development Research Paper 2010/11. 

Alkire, S. and Santos, M. E. (2014). ‘Measuring Acute Poverty in the Developing World: 
Robustness and Scope of the Multidimensional Poverty Index’. World Development, 
59: 251–274. 

Alkire, S. and Seth, S. (2013b). ‘Multidimensional Poverty Reduction in India between 
1999 and 2006: Where and How?’ OPHI Working Paper 60, Oxford University. 

Anderson, G. (1996). ‘Nonparametric Tests of Stochastic Dominance in Income 
Distributions’. Econometrica, 64(5): 1183–1193. 

Barrett, G. and Donald, S. G. (2003). ‘Consistent Tests for Stochastic Dominance’. 
Econometrica, 71(1): 71–103. 

Batana, Y. M. (2013). ‘Multidimensional Measurement of Poverty Among Women in 
Sub-Saharan Africa’. Social Indicators Research, 112(2): 337–362. 

Biewen, M. (2002). ‘Bootstrap Inference for Inequality, Mobility and Poverty 
Measurement’. Journal of Econometrics, 108(2): 317–342. 

Boland, P. J. and Proschan, F. (1988). ‘Multivariate Arrangement Increasing Functions 
with Applications in Probability and Statistics’. Journal of Multivariate Analysis, 
25(2): 286–298. 

Cherchye  et al. (2007): Cherchye L., Moesen, W., Rogge, N., Puyenbroeck, T.V., Saisana, 
M., Saltelli, A., Liska, R., and Tarantola, S. (2007). ‘Creating Composite Indicators 
with DEA and Robustness Analysis: The Case of the Technology Achievement 
Index’. Journal of the Operational Research Society, 59(2): 239–251. 

Cherchye et al. (2008): Cherchye L., Ooghe, E., and Puyenbroeck, T. V. (2008). ‘Robust 
Human Development Rankings’. Journal of Economic Inequality, 6(4): 287–321. 

Chung, K. H. and Lee, S. (2001). ‘Optimal Bootstrap Sample Size in Construction of 
Percentile Confidence Bounds’. Scandinavian Journal of Statistics, 28(1): 225–239. 

Cowell, F. (1989). ‘Sampling Variance and Decomposable Inequality Measures’. Journal of 
Econometrics 42(1): 27–41. 

Davidson, R. and Duclos, J.-Y. (2000). ‘Statistical Inference for Stochastic Dominance 
and for the Measurement of Poverty and Inequality’. Econometrica, 68: 1435–1464. 

Davidson, R. and Duclos, J.-Y. (2012). ‘Testing for Restricted Stochastic Dominance’. 
Econometric Reviews, 32(1): 84–125. 

Davidson, R. and Flachaire, E. (2007). ‘Asymptotic and Bootstrap Inference for 
Inequality and Poverty Measures’. Journal of Econometrics, 141(1): 141–166. 



Alkire, Foster, Seth, Santos, Roche and Ballon  8: Robustness Analysis 

OPHI Working Paper 89  www.ophi.org 29 

Deaton, A. (1997). The Analysis of Household Surveys. A Microeconometric Approach to 
Development Policy. John Hopkins University Press. 

Duclos, J.-Y. and Araar, A. (2006). Poverty and Equity: Measurement, Policy and Estimation with 
DAD. Springer.  

Efron, B. (1979). ‘Bootstrap Methods: Another Look at the Jackknife’. The Annals of 
Statistics, 7(1): 1–26. 

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC. 

Foster J., McGillivray, M., and Seth, S. (2009). ‘Rank Robustness of Composite Indices’. 
OPHI Working Paper 26, Oxford University. 

Foster, J. E., McGillivray, M., and Seth, S. (2013). ‘Composite Indices: Rank Robustness, 
Statistical Association and Redundancy’. Econometric Reviews, 32(1): 35–56. 

Høyland et al. (2012): Høyland, B., Moene, K., and Willumsen, F. (2012). ‘The Tyranny 
of International Index Rankings’. Journal of Development Economics, 97(1): 1–14. 

Joe, H. (1990). ‘Multivariate Concordance’. Journal of Multivariate Analysis, 35(1): 12–30. 

Kendall, M. G. (1970), Rank Correlation Methods, London: Griffin. 

Kendall, M. G. and Gibbons, J. D. (1990). Rank Correlation Method. E. Arnold. 

Lasso de la Vega, M. C. (2010). ‘Counting Poverty Orderings and Deprivation Curves’, in 
J. A. Bishop (ed.), Studies in Applied Welfare Analysis: Papers from the Third ECINEQ 
Meeting. Research on Economic Inequality 18, ch. 7. 

Mills, A.M. and Zandvakili, S. (1997). ‘Statistical Inference via Bootstrapping for 
Measures of Inequality’. Journal of Applied Econometrics, 12(2): 133–150. 

Nardo et al. (2005): M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., and 
Giovannini, E. (2005). ‘Handbook on Constructing Composite Indicators: 
Methodology and User’s Guide’. OECD Statistics Working Papers 2005/3. OECD 
Publishing. 

Newcombe, R. G. (1998). ‘Two-sided Confidence Intervals for the Single Proportion: 
Comparison of Seven Methods’. Statistics in Medicine, 17(8): 857–872. 

Nygård, F. and Sandström, A. (1989). ‘Income Inequality Measures Based on Sample 
Surveys’. Journal of Econometrics, 42(1): 81–95. 

Permanyer I. (2011). ‘Assessing the Robustness of Composite Indices Rankings’. Review of 
Income and Wealth 57(2): 306–326. 

Permanyer, I. (2012). ‘Uncertainty and Robustness in Composite Indices Rankings’. 
Oxford Economic Papers 64(1): 57–79. 

Poi, B. P. (2004). ‘From the Help Desk: Some Bootstrapping Techniques’. Stata Journal, 
4(3): 312–328. 

Saisana et al. (2005): Saisana, M., Saltelli, A., and Tarantola, S. (2005). ‘Uncertainty and 
Sensitivity Analysis as Tools for the Quality Assessment of Composite Indicators’. 
Journal of the Royal Statistical Society: Ser. A (Statistics in Society), 168(2): 307–323. 

Seth, S. (2013). ‘A Class of Distribution and Association Sensitive Multidimensional 
Welfare Indices’. Journal of Economic Inequality, 11(2): 133–162. 

Swanepoel, J. W H. (1986). ‘A Note on Proving that the (Modified) Bootstrap Works’. 
Communications in Statistics (Theory and Methods) 15(11): 3193–3203. 



Alkire, Foster, Seth, Santos, Roche and Ballon  8: Robustness Analysis 

OPHI Working Paper 89  www.ophi.org 30 

Ura et al. (2012): Ura, K., Alkire, S., Zangmo, T, and Wangdi, K. (2012). An Extensive 
Analysis of The Gross National Happiness Index. Centre of Bhutan Studies. 

Wolff  et al. (2011): Wolff, H., Chong, H., and Auffhammer, M. (2011). ‘Classification, 
Detection and Consequences of Data Error: Evidence from the Human 
Development Index’. The Economic Journal, 121(553): 843–870. 

Yalonetzky, G. (2014). ‘Conditions for the Most Robust Multidimensional Poverty 
Comparisons Using Counting Measures and Ordinal Variables’. Social Choice and 
Welfare. Published online February. 


